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Abstract: Quinoline derivatives have been reported to possess a wide range of pharmaceutical
activities. Our group previously synthesized a series of quinoline compounds, in which compound
91b1 showed a significant anticancer effect. The purpose of this study was to evaluate the anticancer
activity of compound 91b1 in vitro and in vivo, and screen out its regulated target. A series of cancer
cell lines and nontumor cell lines were treated with compound 91b1 by MTS cytotoxicity assay and
cell-cycle assay. In vivo anticancer activity was evaluated by a xenografted model on nude mice.
Target prediction of 91b1 was assessed by microarray assay and confirmed by pancancer analysis.
Relative expression of the target gene Lumican was measured by qRT-PCR. 91b1 significantly reduced
tumor size in the nude mice xenograft model. Lumican was downregulated after 91b1 treatment.
Lumican was proven to increase tumorigenesis in vivo, as well as cancer cell migration, invasion, and
proliferation in vitro. The results of this study suggest that the anticancer activity of compound 91b1
probably works through downregulating the gene Lumican.
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1. Introduction

Cancer continues to be a major public health issue globally. Researchers have esti-
mated that there were around 19.3 million new cases of cancer and 10.0 million cancer
deaths worldwide in 2020 [1]. Oncogenes, tumor-suppressor genes, and other homeostatic
genes are usually responsible for tumorigenesis. Multiple mutations of different genes
affect cellular pathways that they control, which also contributes to the cause of cancers [2].
Gene expression, morphology, unregulated proliferation, escape from programmed cell
death, and ability to invade distant tissues allow cancer cells to form an aggressive tumor
population with metastasis [3]. Thus, the development of anticancer drugs with high effi-
cacy and low toxicity remains a great challenge. Exploring novel oncogenes as a therapeutic
target is a promising strategy for precision treatment and individualized treatment.

Quinolines are one of the most important classes of heterocyclic alkaloids, which
have been widely reported to possess a broad range of pharmaceutical activities [4,5].
Quinoline-bearing structures exist in many biologically active drugs, including Quinine,
Quinodine, Mefloquine, and Chloroquine [6–8]. Quinoline and its heterocyclic derivatives
have been tested by various groups and proved to have many biological activities, includ-
ing antimalarial, antibacterial, antiviral, and anti-inflammatory activity [9–11]. Quinoline
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derivatives have also been extensively studied as potential antitumor agents [12,13]. With
the development of cytobiology and molecular biology, the essential principles of tumori-
genesis, invasion, migration, and metastasis induced by quinoline derivatives have been
further explained. Antitumor mechanisms of quinoline derivatives include alkylating
DNA [14], inhibiting c-Met kinase [15], epidermal growth factor receptor (EGFR) [16], and
vascular endothelial growth factor (VEGF) [16–18]. Some were also proven to inhibit P-
glycoprotein [19]. The anticancer activity of quinoline derivates has been widely recognized
and investigated. Our group synthesized a series of quinoline derivatives and evaluated
their anticancer effect. A total of 27 compounds were examined for anticancer activities
against cancer cell lines of hepatocellular carcinoma (Hep3B), lung carcinoma (A549), and
esophageal squamous cell carcinoma (HKESC-1, HKESC-4, and KYSE150) [20]. Quino-
line compound 83b inhibited cancer growth in esophageal squamous cell carcinoma by
downregulating COX-2 and PGE2 [21]. The cytotoxic potential of six quinoline derivatives
were examined both in vitro and in vivo [22]. 2-Formyl-8-hydroxy-qinolinium chloride was
prepared and its anticancer activity was evaluated both in vitro and in vivo [23]. The rela-
tionship between structure and activity was also researched, and the presence of a bromine
atom and hydroxy group are likely the favorable structural components for molecules to ex-
ert a strong anticancer effect [22,24]. The identification of the target of studied compounds
is an important step in advancing the field of drug development.

LUMICAN belongs to Class II of the small leucine-rich proteoglycan family (SLRPs),
which are among the important noncollagenous extracellular matrix (ECM) proteins [25].
Lumican is localized at chromosome 12q21.3-q22 and encodes a 338-residue protein [26], and
is expressed in many tissues, including the skin, arteries, lungs, vertebral discs, kidneys,
bone, aorta, and articular cartilage [27]. Recent studies have shown that LUMICAN is a key
regulator of collagen fibrillogenesis and participates in the maintenance of tissue homeosta-
sis, as well as modulating cellular functions, including cell proliferation, migration, and
differentiation [28]. Lumican expression is associated with various cancer types, resulting in
either protumorigenic or antitumorigenic effects [29]. In breast cancer, LUMICAN protein
transforms mesenchymal cells into epithelial-like cells to reverse metastases [30]. In lung
cancer, Lumican is highly expressed in osteotropic lung cancer cells, with an enhanced
capacity of bone metastasis. Downregulation of Lumican suppresses cancer cell migration
and invasion in vitro [31]. In gastric cancer, Lumican expression in tumor tissues is signifi-
cantly higher than that in adjacent nontumor tissues. A high expression of Lumican is an
important risk factor for poor survival [32].

In the present study, one of the most promising quinoline compounds, 91b1, synthe-
sized by our group, was evaluated in vitro and in vivo to identify its anticancer activity.
To further explain the mechanisms of the anticancer behavior of compound 91b1, the
most associated gene, Lumican, was screened and studied. The overall results provided a
promising candidate for anticancer therapy and evidence of a cancer-related gene, which
may suggest a target for further anticancer drug development.

2. Results
2.1. Compound 91b1 Showed Anticancer Effect In Vitro

The cytotoxicity of compound 91b1 on four cancer cell lines (A549, AGS, KYSE150,
and KYSE450) and one nontumor cell line (NE3) was examined by MTS assay. As shown
in Figure 1a–e, Compound 91b1 exhibited a comparable inhibitory effect on all tested cell
lines with CDDP in a dose-dependent manner. The cytotoxic effect was determined by the
MTS50 value, which showed a 50% reduction in MTS signal compared with the vehicle
control. The MTS50 values of compound 91b1 and CDDP on cells are summarized in Table 1.
The MTS50 values of compound 91b1 were 15.38 µg/mL, 4.28 µg/mL, 4.17 µg/mL, and
1.83 µg/mL for the A549, AGS, KYSE150, and KYSE450 cell lines, respectively. The MTS50
values of CDDP were 6.23 µg/mL, 13.00 µg/mL, 13.2 µg/mL, and 6.83 µg/mL for the A549,
AGS, KYSE150, and KYSE450 cell lines, respectively. The MTS50 values of compound 91b1
were lower than those of CDDP in the AGS, KYSE150, and KYSE450 cell lines, implying
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that compound 91b1 had a stronger anticancer effect than CDDP in these three cancer cell
lines. For the nontumor cell line NE3, the MTS50 values of compound 91b1 and CDDP
were 2.17 µg/mL and 1.19 µg/mL, respectively, indicating that compound 91b1 may be
less toxic than CDDP to nontumor cells.
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Figure 1. Compound 91b1 showed anticancer effect in vitro. Compound 91b1 and CDDP both
showed dose-dependent cytotoxicity for the (a) A549 cell line; (b) AGS cell line; (c) KYSE150 cell
line; (d) KYSE450 cell line; and nontumor cell line (e) NE3 cell lines. CDDP was used as the positive
control. N = 4. Compound 91b1 inhibited cell proliferation of cancer cells of (f) A549 cells; (g) AGS
cells; (h) KYSE150 cells; and (i) KYSE450 cells cultured with 10 µg/mL of compound 91b1. N = 4.
Vehicle control: 0.1% DMSO (dimethyl sulfoxide). CDDP: cisplatin. * p < 0.05; ** p < 0.01; (j): cell-cycle
distribution of A549 cells and (k): KYSE450 cells after treatment of increasing concentrations of
compound 91b1. 0.1% DMSO was applied as vehicle control, N = 3. * p < 0.05; ** p < 0.01.

Table 1. MTS50 value (µg/mL) of compound 91b1 and CDDP for four cancer cell lines and one
nontumor cell line (NE3). Results were calculated by GraphPad nonlinear regression analysis from
four parallel experiments.

Cell Lines
MTS50 Value (µg/mL)

91b1 CDDP

A549 15.38 6.23

AGS 4.28 13.00

KYSE150 4.17 13.2

KYSE450 1.83 6.83

NE3 2.17 1.17
CDDP: cisplatin. N = 4. Vehicle control: 0.1% DMSO (dimethyl sulfoxide).
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To study the effect of compound 91b1 on cell proliferation, an MTS cell proliferation
assay was performed on A549, AGS, KYSE150, and KYSE450 cell lines. The results are
shown in Figure 1f–i. Cell lines treated with compound 91b1 showed an obvious reduction
in proliferation rate compared with the vehicle control group on A549 cells after 48 h
of incubation, AGS cells after 72 h of incubation, KYSE150 cells after 24 h of incubation,
and KYSE450 cells after 48 h of incubation, respectively, indicating that compound 91b1
inhibited cancer cell growth at an incubation time of 48 h, except AGS cells (cells were
significantly inhibited after 72 h), but more strongly inhibited KYSE150 cell proliferation
(cells were significantly inhibited after 24 h of incubation).

To explain the effect of low proliferation rate in cancer cells after compound 91b1
treatment, cell-cycle analysis was performed to reveal the cell-cycle changes of A549 and
KYSE450 with 91b1 treatment. As shown in Figure 1j,k. The percentage of distribution of
the G0/G1 phase in A549 cells was increased dose-dependently after the compound 91b1
treatment. The percentage of distribution of the G0/G1 phase in KYSE450 cells showed an
increasing trend after treatment with compound 91b1; however, no significant difference
was observed. It is suggested that compound 91b1 induced A549 cancer cells and KYSE450
cancer cells to be arrested at the G0/G1 phase and finally resulted in the inhibition of cancer
cell growth.

2.2. In Vivo Antitumor Effect of Compound 91b1 on Nude Mice Xenograft with KYSE450

To further evaluate the antitumor effect of compound 91b1, athymic nude mice
xenografted with KYSE450 cells were used in this project. Figure 2 summarizes the change
of relative tumor volume of nude mice xenografted with KYSE150 cells with the treatment
of compound 91b1 via images of nude mice in the treated group and control group on
the initial day and 25th day, respectively. Compound 91b1 significantly inhibited tumor
growth in mice at the dose of 50 mg/kg compared to vehicle control. The tumor volume
of the nude mice in the vehicle control group increased gradually every day and reached
about five times the size of the tumor on the initial day. The average tumor volume of the
nude mice with the administration of 50 mg/kg/day compound 91b1 was just two times
the volume of the tumor on the initial day. Additionally, in the compound 91b1-treated
group, one of the tumors remained at the initial size, and one was totally invisible at the
13th day, without relapse.
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Figure 2. Compound 91b1 inhibited tumor growth in vivo. (a) Images of one animal from the vehicle
control group and compound 91b1-treated group in the KYSE150 xenograft test on the first day and
the 25th day; (b) relative tumor volume changes of subcutaneous KYSE150 xenografts of the vehicle
control group and compound 91b1-treated group (50 mg/kg/day compound 91b1) after 25 days; 6%
PEG saline was applied as the vehicle control. N = 5. ** p-value < 0.05.

2.3. Lumican Plays a Critical Role in Several Types of Cancers and Can Be Downregulated by
Compound 91b1

cDNA microarray analysis was performed to study the changes of gene expression
caused by compound 91b1 in cancer cells. A heatmap (Figure 3a) and violin plot (Figure 3b)
showed the different expression profile of KYSE150 cells treated with compound 91b1
compared with a blank control. A scatter plot of different expressed genes (Figure 3c)
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exhibited upregulated genes as red dots and downregulated genes as green dots. Collec-
tively, there were 31,520 upregulated genes and 13,180 downregulated genes identified in
total. Gene expression changes was evaluated by signal-intensity fold change. Figure 3d
summarizes the five most downregulated genes and the five most upregulated genes.
Lumican was downregulated to 48.34% compared with the control group, and was studied
in this project. The relative expression of Lumican was examined by quantitative real-time
PCR on KYSE150 cells after treatment with compound 91b1. As shown in Figure 3e, the
Lumican mRNA expression level of KYSE150 cells decreased in a dose-dependent manner
with increasing concentrations of compound 91b1 (5 µg/mL, 9.5 µg/mL, 20 µg/mL, and
50 µg/mL), and additionally showed significance when the concentration of compound
91b1 reached 20 µg/mL. According to the pancancer analysis in Figure 3f, Lumican was
differently expressed in several kinds of cancers, suggesting the critical roles of Lumican in
tumorigenesis and tumor development.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 3. Lumican plays a critical role in several kinds of cancers and can be downregulated by com-
pound 91b1. (a) Heatmap of differentially expressed genes in KYSE150 cells treated with compound 
91b1 versus blank medium control, the color indicates the relative expression of genes according to 
color bar; (b) violin plot of microarray data of KYSE150 cells treated with compound 91b1 for 48 h 
versus blank medium control; (c) scatter plot of differently expressed genes in KYSE150 cells treated 
with compound 91b1 versus blank medium control, red dots indicate up-regulated genes, and green 
dots indicate down-regulated genes; (d) most genes regulated by compound 91b1 identified by mi-
croarray analysis; (e) relative Lumican expression level after 48 h of treatment with different concen-
trations of compound 91b1 (5 μg/mL, 9.5 μg/mL, 20 μg/mL, and 50 μg/mL) and vehicle (0.1% 
DMSO) in KYSE150. The relative Lumican expression level was determined by comparing with cells 
treated with the vehicle after normalization with the expression of β-actin using qPCR. ** p < 0.01; 
(f) pancancer analysis of Lumican by TIMER2.0, up-regulated or down-regulated genes in the tumors 
were compared to normal tissues for each cancer type, red dots indicate tumor tissue, bule dots 
indicate normal tissue, purple dots indicate to metastasis tumor tissue, * p < 0.05; ** p < 0.01; *** p < 
0.001 [33]. 

2.4. Overexpression of Lumican Promoted Tumorigenesis 
To verify the microarray results, the relative expression of Lumican in tumor tissues 

was compared with the adjacent normal tissue after being normalized by the expression 
of β-actin by ΔCt (ΔCt = Cq of Lumican–Cq of β-actin). The scatter plot is shown in Figure 
4a, indicating that the relative expression level of Lumican of the tumor sample group was 

Figure 3. Lumican plays a critical role in several kinds of cancers and can be downregulated by com-
pound 91b1. (a) Heatmap of differentially expressed genes in KYSE150 cells treated with compound
91b1 versus blank medium control, the color indicates the relative expression of genes according
to color bar; (b) violin plot of microarray data of KYSE150 cells treated with compound 91b1 for
48 h versus blank medium control; (c) scatter plot of differently expressed genes in KYSE150 cells
treated with compound 91b1 versus blank medium control, red dots indicate up-regulated genes, and
green dots indicate down-regulated genes; (d) most genes regulated by compound 91b1 identified
by microarray analysis; (e) relative Lumican expression level after 48 h of treatment with different
concentrations of compound 91b1 (5 µg/mL, 9.5 µg/mL, 20 µg/mL, and 50 µg/mL) and vehicle
(0.1% DMSO) in KYSE150. The relative Lumican expression level was determined by comparing
with cells treated with the vehicle after normalization with the expression of β-actin using qPCR.
** p < 0.01; (f) pancancer analysis of Lumican by TIMER2.0, up-regulated or down-regulated genes
in the tumors were compared to normal tissues for each cancer type, red dots indicate tumor tissue,
bule dots indicate normal tissue, purple dots indicate to metastasis tumor tissue, * p < 0.05; ** p < 0.01;
*** p < 0.001 [33].
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2.4. Overexpression of Lumican Promoted Tumorigenesis

To verify the microarray results, the relative expression of Lumican in tumor tissues
was compared with the adjacent normal tissue after being normalized by the expression of
β-actin by ∆Ct (∆Ct = Cq of Lumican–Cq of β-actin). The scatter plot is shown in Figure 4a,
indicating that the relative expression level of Lumican of the tumor sample group was in
general higher than in the nontumor sample group. Relative expression levels of Lumican
in seven cancer cell lines were compared with the nontumor cell line (NE3) after they
were normalized by the expression of β-actin and calculated by the 2−∆∆Ct method by
qPCR. As shown in Figure 4b, five out of seven (71.4%) cancer cell lines—KYSE30, KYSE70,
KYSE150, KYSE510, and SLMT1—showed a higher relative expression level of Lumican
than NE3; one cancer cell line, HKESC3 [34], showed a lower relative expression level of
Lumican than NE3; while one cancer cell line, KYSE450, showed no significant difference
of relative Lumican expression compared with NE3. The overall results suggested that
Lumican is usually overexpressed in tumor tissue or cancer cells. To identify the function of
the Lumican gene in tumorigenesis and development, NIH3T3 parental, NIH 3T3/Lum, or
NIH 3T3/Mock cells were subcutaneously injected into the flanks of female Balb/c athymic
nude mice. After a 14-day period, the possible formation of subcutaneous tumors was
observed. Figure 4c shows images of each animal in the NIH 3T3 parental group, NIH
3T3/Mock group, and NIH 3T3/Lum group on day 0, day 7, and day 14.
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Figure 4. Lumican is usually overexpressed in tumor tissue and several kinds of cancer cell lines,
and promotes tumorigenesis. (a) Relative Lumican expression level in tumor tissue and adjacent
normal tissue isolated from cancer patients. β-actin was applied as the reference gene to normalize
the Lumican expression. N = 20. ** p < 0.01; (b) relative Lumican expression levels in seven cancer cell
lines and the nontumor cell line (NE3). The relative Lumican expression level was determined by
comparison with NE3, after being normalized with the expression of β-actin. ** p < 0.01; (c) images
of subcutaneous tumor formation in the nude mice with the injection of NIH 3T3 parental cells,
Mock vector, or Lumican gene transfected NIH 3T3 cells on day 0, day 7, and day 14, respectively,
after injection.

2.5. Lumican Induces Cancer Cells Migration, Invasion, and Proliferation

To further study the function of Lumican, KYSE150 cells were cocultured with rec-
Lumican to investigate the effect of Lumican on wound healing and transwell mitrigel
invasion. As shown in Figure 5a, after 24 h incubation with recLumican, there were more
cells migrated into the scratched area than the control group in a dose-dependent manner.
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Figure 5b shows images of crystal violet-stained cells, which were transferred through
membranes after coculturing with recLumican after 24 h. The average invaded cell num-
bers were summarized in Figure 5c. The invaded cell number of KYSE150 cocultured with
recLumican was increased with the increasing concentration of recLumican compared with
the control group. To further study the functional roles of Lumican on cancer cell growth, a
cell proliferation assay was performed by MTS on A549, AGS, KYSE150, and KYSE450 cells
cocultured with or without recLumican at the concentration of 250 ng/mL (based on the
results of the cell invasion assay). According to the results shown in Figure 5d–g, the cell
lines cocultured with 250 ng/mL recLumican showed an increase in the proliferation rate
compared with the control group for A549, AGS, and KYSE150, indicating that Lumican can
promote the proliferation of cancer cells.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 17 
 

 

growth, a cell proliferation assay was performed by MTS on A549, AGS, KYSE150, and 
KYSE450 cells cocultured with or without recLumican at the concentration of 250 ng/mL 
(based on the results of the cell invasion assay). According to the results shown in Figure 
5d–g, the cell lines cocultured with 250 ng/mL recLumican showed an increase in the pro-
liferation rate compared with the control group for A549, AGS, and KYSE150, indicating 
that Lumican can promote the proliferation of cancer cells. 

 
Figure 5. Lumican-induced cancer cell migration, invasion, and proliferation. (a) Images of wound-
healing assay with recLumican protein treatment (50 ng/mL or 250 ng/mL) on KYSE150 cells at 0 h, 
12 h, and 24 h. Exposure time: 12.5 ms. Original magnification: 10×. Scale: 2 mm. (b) Cell invasion 
assay with the transwell matrigel chamber and KYSE150 cells cocultured with different concentra-
tions of purified human recLumican. Original magnification: 40×. (c) Average invaded cell numbers 
of KYSE150 cocultured with different concentrations of purified human recLumican (0, 50, 250, 500 
ng/mL recLumican). The invaded cells were counted under a microscope in four random fields at 
the original magnification of 40×. * p < 0.05; ** p < 0.01. Proliferation curves of cancer cells cocultured 
with or without 250 ng/mL human recLumican of (d) A549 cells; (e) AGS cells; (f) KYSE150 cells; (g) 
KYSE450 cells. N = 3. Fresh culture medium was applied as the blank control. * p < 0.05; ** p < 0.01. 

3. Discussion 
Quinoline compounds isolated from natural sources have been reported to have 

great potential in pharmaceutical applications [5]. Based on quinoline’s structure, a series 
of compounds have been synthesized by our group [22,35]. Chemically modified natural 
compounds possess high biological activity with low toxicity. One of the quinoline com-
pounds we synthesized, 91b1, was studied in this project. 

The cytotoxic effect of compound 91b1 on cancer cells compared with noncancer cells 
was evaluated by MTS cytotoxicity assay [36]. CDDP (cisplatin) and doxorubicin (DOX) 
are well-known chemotherapeutic drugs to treat NSCLC (nonsmall cell lung cancer), 
ESCC (esophageal squamous cell carcinoma), and gastrointestinal cancer [37–42], which 
were applied as the positive control to assess the anticancer potential of compound 91b1. 
The MTS50 values of compound 91b1 were lower than those of CDDP in the AGS, 
KYSE150, and KYSE450 cell lines, implying that compound 91b1 showed stronger anti-
cancer effects than CDDP in these three cancer cell lines. In nontumor cell line NE3, the 
MTS50 value of compound 91b1 (2.17 μg/mL) was higher than CDDP (1.19 μg/mL), indi-
cating that compound 91b1 may be less toxic than CDDP to nontumor cells. Hence, com-
pound 91b1 exhibited a good potential as an anticancer agent, with higher anticancer ac-
tivity and lower toxicity compared with the first-line anticancer drug CDDP against can-
cer cells. Furthermore, in vivo tests showed that compound 91b1 significantly suppressed 
the development of tumors in animals. 

Figure 5. Lumican-induced cancer cell migration, invasion, and proliferation. (a) Images of wound-
healing assay with recLumican protein treatment (50 ng/mL or 250 ng/mL) on KYSE150 cells at
0 h, 12 h, and 24 h. Exposure time: 12.5 ms. Original magnification: 10×. Scale: 2 mm. (b) Cell
invasion assay with the transwell matrigel chamber and KYSE150 cells cocultured with different
concentrations of purified human recLumican. Original magnification: 40×. (c) Average invaded
cell numbers of KYSE150 cocultured with different concentrations of purified human recLumican
(0, 50, 250, 500 ng/mL recLumican). The invaded cells were counted under a microscope in four
random fields at the original magnification of 40×. * p < 0.05; ** p < 0.01. Proliferation curves of
cancer cells cocultured with or without 250 ng/mL human recLumican of (d) A549 cells; (e) AGS
cells; (f) KYSE150 cells; (g) KYSE450 cells. N = 3. Fresh culture medium was applied as the blank
control. * p < 0.05; ** p < 0.01.

3. Discussion

Quinoline compounds isolated from natural sources have been reported to have great
potential in pharmaceutical applications [5]. Based on quinoline’s structure, a series of
compounds have been synthesized by our group [22,35]. Chemically modified natural com-
pounds possess high biological activity with low toxicity. One of the quinoline compounds
we synthesized, 91b1, was studied in this project.

The cytotoxic effect of compound 91b1 on cancer cells compared with noncancer cells
was evaluated by MTS cytotoxicity assay [36]. CDDP (cisplatin) and doxorubicin (DOX)
are well-known chemotherapeutic drugs to treat NSCLC (nonsmall cell lung cancer), ESCC
(esophageal squamous cell carcinoma), and gastrointestinal cancer [37–42], which were
applied as the positive control to assess the anticancer potential of compound 91b1. The
MTS50 values of compound 91b1 were lower than those of CDDP in the AGS, KYSE150,
and KYSE450 cell lines, implying that compound 91b1 showed stronger anticancer effects
than CDDP in these three cancer cell lines. In nontumor cell line NE3, the MTS50 value
of compound 91b1 (2.17 µg/mL) was higher than CDDP (1.19 µg/mL), indicating that
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compound 91b1 may be less toxic than CDDP to nontumor cells. Hence, compound
91b1 exhibited a good potential as an anticancer agent, with higher anticancer activity
and lower toxicity compared with the first-line anticancer drug CDDP against cancer
cells. Furthermore, in vivo tests showed that compound 91b1 significantly suppressed the
development of tumors in animals.

The G0/G1 phase of the A549 cell and KYSE450 cell populations were increased,
along with the concentrations of compound 91b1. It is suggested that compound 91b1 may
induce cancer cells accumulated at the G0/G1 phase and cannot complete the normal cell
cycle as usual, which finally results in the inhibition of cancer cell growth. There are also
other anticancer agents reported to arrest G0/G1 phase. Peiminine significantly inhibited
the proliferation and colony formation of Glioblastoma multiforme by arresting cell-cycle
arrest at the G0/G1 phase [43]. Moreover, Casticin induces G0/G1 arrest and apoptosis in
gallbladder cancer [44]. These suggest the anticancer potential of compound 91b1 to treat
other types of cancers.

Lumican was predicted as a possible target of compound 91b1 from cDNA microarray
analysis. The protumorigenic effects or antitumorigenic effects of Lumican differ in different
types of cancers. The mechanisms of Lumican have been widely researched recently. Lumi-
can was found to be overexpressed in bladder cancer tissues, and the depletion of Lumican
inhibited bladder cancer cell proliferation and migration by suppressing MAPK signal-
ing [45]. In liver cancer, silencing Lumican resulted in decreased cancer cell migration by
inhibiting ERK1/JMK signaling [46]. On the contrary, the antitumorigenic effects of Lumican
usually involve cell–cell communication and epithelial-to-mesenchymal transition [47,48].
In this study, we mainly discuss the protumorigenic effects of Lumican. According to our
results, Lumican was overexpressed in both esophageal patients’ tumor tissue and cancer
cell lines (including lung cancer cells, esophageal squamous cell carcinoma, and gastric
cancer cells), and promoted cancer cell migration, invasion, and proliferation, which was
consistent with previous reports, and offered more evidence of the protumorigenic effect of
Lumican in these cancers.

Compound 91b1 dose-dependently downregulated the relative expression of Lumican
in KYSE150 cells, suggesting that quinoline compound 91b1 probably induces an anti-
cancer effect by downregulating the expression of Lumican, modulating its upstream or
downstream signaling pathway in cancer cells. Bio-Plex Pro Cell Signaling Assay was
performed to analyze the involved signaling pathways for treatment with compound 91b1
on KYSE150 cells, to explain the mechanisms of the downregulation effect of Lumican.
Phosphorylated analytes (AKT (Ser473), ATF-2 (Thr71), MEK1 (Ser217/Ser221), ErK1/2
(Thr202/Tyr204,Thr185/Tyr187), p38 MAPK (Thr180/Tyr182), HSP27 (Ser78), p53 (Ser15),
JNK (Thr183/Tyr185), p90 RSK (Ser380), and Stat 3 (Ser727)) from cell lysates, treated with
gradually increased concentrations of compound 91b1 (5, 9.5, and 20 µg/mL) or vehicle
control, were detected by the Bio-Rad Bio-Plex 200 Suspension Array System. Supplemen-
tary Material (Figure S1) summarizes the significant modulated pathways. The reported
pathways involved in Lumican, ERK1/2, and MAPK will be studied further in the future.

Overall, this study comprehensively evaluates the effects of compound 91b1 and the
functions of Lumican. The findings of this study provide more proof of the protumorigenic
effect of Lumican and the potential of quinoline compounds as antitumor agents.

4. Materials and Methods
4.1. Reagents and Materials

Cell culture medium RPMI-1640, F-12, DMEM (Dulbecco’s modified Eagle’s medium),
MEMα (minimum essential medium α), KSFM (keratinocyte serum-free medium), FBS
(fetal bovine serum), penicillin, and streptomycin were purchased from Life Technologies
(Carlsbad, CA, USA).
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4.2. Synthesis of Compound 91b1 with 1H-NMR Examination

The chiral 5,7-dibromo-2-methyl-1,2,3,4-tetrahydroquinolin-8-ol (R/S 91b) was pre-
pared by asymmetric hydrogenation reaction of 5,7-dibromo-2-methylquinolin-8-ol. 5,7-
dibromo-2-methylquinolin-8-ol was synthesized by commercially available 2-methyl-8-
quinolinol (1.6 g, 10 mmol), which was dissolved in 150 mL MeOH with dropwise addition
of Br2 (1 mL) [35]. Dr. Penny Chan from our research group synthesized compound 91b and
demonstrated that the antitumor effect of compound (R/S) 91b showed a promising MTS50
compared with Cisplatin, but the R enantiomer of 91b (91b1) exhibited better antitumor
activity than the S enantiomer of 91b (91b2) on most of the tested cancer lines (Hep3B,
HKESC-1, HKESC-4, and KYSE150 cell lines). According to Dr. Penny Chan’s work, we
inferred that the chemical structure of 91b1 was more favorable for the cancer cell mem-
brane and could kill the cancer cells more effectively than 91b2. Thus, compound 91b1 was
further studied in this project. Compound 91b1 was used in this project to examine in vitro
and in vivo anticancer effects. Compound 91b1 was completely dissolved in dimethyl
sulfoxide (DMSO). The structure of compound 91b1 was examined by 1H-NMR. Figure 6
shows the structure and the 1H-NMR spectrum of compound 91b1. The LC/MS report was
summarized in Supplementary materials (Figure S2).
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4.3. Cell Lines and Cell Culture

A total of 10 cell lines were examined in this study. Six esophageal squamous cell
carcinoma (ESCC) cell lines—KYSE30, KYSE70, KYSE150, KYSE450, KYSE510 [49], and
HKESC3 [34]—were purchased from DSMZ (Deutsche Sammlung van Mikroorganismen
und Zellkulturen, Braunschweig, Germany). One ESCC cell line, SLMT-1, was kindly
provided by Professor Gopesh Srivastava of the Department of Pathology, the University
of Hong Kong. A lung cancer cell line, A549, and a gastric adenocarcinoma cell line, AGS,
were purchased from ATCC (American Type Culture Collection, Manassas, VA, USA).
A nontumor esophageal epithelial cell line, NE3 [50], was kindly provided by Professor
George S.W. Tsao from the Department of Anatomy of The University of Hong Kong. The
culture medium for KYSE30, KYSE150, KYSE450, and KYSE510 was 45% RPMI with 45%
F-12 and 10% FBS; that for KYSE70 was 90% RPMI with 10% FBS; that for SLMT-1 and
HKESC3 was 90% MEMα with 10% FBS; that for A549 and AGS was 90% DMEM with 10%
FBS; and that for NE3 was KSFM with complementary supplements. All media were sup-
plemented with 100 units/mL penicillin G and 100 µg/mL streptomycin, and all cell lines
were maintained in a humidified atmosphere of 95% air and 5% CO2 at 37 ◦C. The cultures
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were passaged at preconfluent densities of about 80% using a solution of 0.25% trypsin
(Invitrogen, Waltham, MA, USA). Cells were washed briefly with phosphate-buffered saline
(PBS), treated with 0.25% trypsin, and harvested by centrifugation for subculturing.

For the study of Lumican tumorigenesis function, NIH-3T3/Lum and NIH-3T3/Mock
cells were established from mouse embryo embryonic fibroblast cell line NIH 3T3 cells,
which were transfected with Lumican expression vector (Human LUM ORF mammalian
expression plasmid, C-Myc tag, Sino Bioglogical Inc., Beijing, China.) or mock vector
(pCMV/hygro-Negative Control Vector, Myc-tagged, Sino Biological Inc., Beijing, China)
as the negative control. NIH-3T3/Lum and NIH-3T3/Mock cells were maintained in
DMEM medium supplemented with 10% FBS, 100 µg/mL penicillin, and 400 µg/mL
hygromycin (Invitrogen, Waltham, MA, USA) at 37 °C in a humidified incubator with 5%
CO2. Trypsinization was performed when the density of cells reached 80% confluence.

4.4. Balb/c Nude Mice

Female Balb/c-nu mice, each weighing 18 g, were purchased from Beijing Charles
River Laboratories. The animal approval code was 440072000011798 and the certificate
number was SCXK (Beijing) 2012-0001.

The animals were kept in the SPF-grade animal laboratory, which conformed to the
SPF grade requirement of an animal testing facility, where temperature was within the
range of 22 ◦C (±2 ◦C), humidity was within the range of 30~70%, the diurnal lighting and
darkness cycle was 12 h, and the number of air changes per hour was within the range of
10–20 times. An individually ventilated cage (IVC) system was applied to culture nude
athymic mice. The approval No. of the SPF animal laboratory was SYXK (Guangdong)
2005-0062. The mice chow was SPF-grade full pellets for mouse, which was bought from
Guangdong Medicinal Laboratory Animal Center.

The nutritional values and the sanitation condition were confirmed to meet the SPF-
grade requirement for animal testing. Antiseptic water was given ad libitum. All animals
were quarantined for at least 7 days in a germ-free environment with a 12 h diurnal lighting
and darkness cycle to confirm they were in healthy condition for experiments. All animal
experiments in this project were conducted following the Cap 340 Animal License from
Department of Health (HKSAR Government).

4.5. Patient Specimens

Twenty archival esophageal squamous cell carcinoma (ESCC) paired patient specimens
(nontumor and tumor) were used for the study of Lumican expression. The ESCC tumor
specimens were collected from the Department of Surgery, Queen Mary Hospital, Hong
Kong, during the period of 1990–2001, after ESCC patients had undergone esophagectomy.
Their corresponding nontumor epithelial tissue specimens were collected for comparison,
located at least 10 cm away from the tumor.

4.6. Cytotoxicity Assay of Compound 91b1

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) assay was performed to evaluate the cytotoxic effect of quinoline compounds 91b1 and
positive control cisplatin on selected cell lines (cancer cell lines and immortalized nontumor cell
lines) using CellTiter96 AQueous One Solution Cell Proliferation (Promega, Madison, WI, USA),
following the manual instructions.

Briefly, about 5 × 103 cells were seeded into each well of a flat-bottom 96-well cell
culture plate in 100 µL recommended culture medium and were allowed to grow for 24 h
at 37 ◦C with 5% CO2. After 24 h of incubation, the old culture medium was replaced by
fresh medium with treatment. The concentrations were gradually increased for compound
91b1 or cisplatin, from 0 µg/mL to 50 µg/mL (0, 1.562, 3.125, 6.250, 12.500, 25.000, and
50.000 µg/mL), and 0.1% DMSO was added to the medium as vehicle control, n = 4. The
seeded 96-well plates were then incubated for 48 h at 37 ◦C with 5% CO2. The results were
recorded by a microplate reader (Bio-RAD, Ultrmark, Microplate Imaging System, Hercules,
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CA, USA) to measure absorbance at 492 nm to determine the cell viability. The control value
corresponding to untreated cells was taken as 100% and the viability of treated samples
was expressed as a percentage of the control. Finally, the curves of cell viability against
compound concentrations were plotted and the MTS50 (concentration of tested compounds
that had 50% inhibition against MTS activity) of the tested compounds were determined.

4.7. Cell Proliferation Assay by MTS

MTS assay was performed to analyze the effect on cell proliferation of adding the com-
pounds 91b1, doxorubicin, or human Lumican protein (recLumican). The tumor cell lines
A549, AGS, KYSE150, and KYSE450 were tested with the compound 91b1 or recLumican
for the cell proliferating effect.

The tested cells were harvested by trypsinization and the cell number was counted by
hemocytometer under a microscope. Approximately 5000 cells were plated in a flat-bottom
96-well plate in 100 µL of respective culture medium in each well. After incubation at
37 ◦C with 5% CO2 overnight, culture medium was replaced by 200 µL of 10 µg/mL
compound 91b1, or 250 ng/mL recLumican of proper culture medium as a test group, and
0.1% DMSO culture medium as the vehicle control group. MTS reagent was used for the
quantification of cell viability to indicate cell proliferation. MTS working solution was
prepared by diluting five times with autoclaved PBS before use (MTS/PBS (v/v) = 1:4).
A total of 100 µL of the MTS working solution was added to each well after removal of
the culture medium at 0 h, 6 h, 24 h, 48 h, and 72 h, respectively, without disturbing the
attached cells, and then incubated at 37 °C with 5% CO2 for a period of time, depending on
the cell type. The cell viability was then determined by measuring the absorbance of the
well at 492 nm using a microplate reader (Bio-RAD, Ultrmark, Microplate Imaging System,
Hercules, CA, USA). Relative growth (compared with the cell viability at 0 h) of each cell
line was calculated by [A]T

[A]T0
, where [A]T is the absorbance at different time points and [A]T0

is the absorbance at 0 h. This assay was performed in triplicate.

4.8. Cell Cycle Analysis

Approximately 8 × 105 cells were seeded into each well of a 6-well plate. After
24 h incubation at 37 ◦C with 5% CO2, culture medium was replaced by fresh medium
with compound 91b1 at a gradually increasing concentrations of 5, 10, 20, and 50 µg/mL,
doxorubicin at 0.5 µg/mL as positive control, or 0.1% DMSO culture medium as vehicle
control (n = 3). After 24 h treatment at 37 ◦C with 5% CO2, cells were harvested by
trypsinization to obtain cell pellets to be fixed with 70% ethanol at 4 ◦C overnight. On the
next day, the fixed cells were digested by PI/RNase Staining Buffer (BD Biosciences, San
Jose, CA, USA) for 15 min incubation at room temperature in darkness. The samples were
analyzed by BD FACSCalibur Flow Cytometer (BD Biosciences, San Jose, CA, USA).

4.9. cDNA Microarray Analysis

The cDNA microarray analysis and associated quality control were performed using
Human Genome U133 Plus 2.0 arrays (Affymetrix, Santa Clara, CA, USA) according to
Affymetrix’s protocol at the Centre for Genomic Sciences of the University of Hong Kong,
as previously reported by our group [51]. Briefly, approximately 8 × 105 KYSE150 cells
were seeded in 75 cm3 flasks and were allowed to grow for 24 h at 37 ◦C with 5% CO2.
After 24 h of incubation, cells were treated with 9.5 µg/mL 91b1 or DMSO (0.05%, Sigma-
Aldrich, St Louis, MO, USA) as the blank control, and then were incubated at 37 ◦C with
5% CO2 for 48 h. Total RNA was extracted using a RNeasy Mini Kit (Qiagen, Frankfurt,
Germany). The RNA integrity was measured by the ratio of 28S/18S ribosomal RNA by
Agilent 2100 Bioanalyzer (USA). cDNA was synthesized from 1 µg of total RNA by reverse
transcription kit (Invitrogen, Waltham, MA, USA). Biotin-labeled cRNA was produced by
an in vitro transcription kit (Invitrogen, Waltham, MA, USA), and was then purified by
RNeasy mini columns (Qiagen, Frankfurt, Germany). About 15 µg denatured cRNA was
hybridized to each Human Genome U133 Plus 2.0 array (Affymetrix), and then was stained
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by a streptavidin phycoerythrin conjugate. The signals were detected by a GeneArray
scanner (Agilent, Santa Clara, CA, USA) and were analyzed by Agilent Genespring GX
and Affymetrix GeneChip Operating Software. The signals of the differentially expressed
genes of the treated samples were compared with the corresponding blank controls. The
threshold levels of the corresponding up- or downregulated genes with ≥2 fold changes
were included for further analysis.

4.10. Quantitative Real-Time PCR

The GoTaq qPCR system (Promega, Madison, WI, USA) was used to analyze the
relative mRNA expression of target genes by quantitative real-time PCR. Total RNA was
extracted from scratched cells by RNeasy Mini Kit (Qiagen, Venlo, The Netherlands) and
reverse-transcribed into cDNA by the GoScriptTM Reverse Transcription System (Promega,
Fitchburg, WI, USA), according to the manufacturer’s instructions. qPCR reactions were
carried out by the PikoReal Real-Time PCR System (Thermo Scientific, Waltham, MA,
USA). The Cq (cycle of quantification) of each sample was determined and recorded by the
program PikoReal Software 2.0 (Thermo Scientific, Waltham, MA, USA).

For all the qPCR reactions, the relative expressions of target genes in different samples were
calculated and compared by using the 2−∆∆Ct method. The expression level of target genes was
normalized by the reference gene β-actin. Primers for Lumican: 5′-CTTCAATCAGATAGCCAGA
CTGC-3′ (forward) and 5′-AGCCAGTTCGTTGTGAGATAAAC-3′ (reverse). Primers for β-actin:
5’-GTGGGGCGCCCCAGGCACCA-3′(forward) and 5’-CTCCTTAATGTCACGCACGATTTC-3’
(reverse).

The calculation of 2−∆∆Ct method was as follows [52]:

∆Cq of target gene = Cq of target gene − Cq of reference gene

∆∆Cq of target gene = ∆Cq of the target gene in treated group − ∆Cq of the target gene in control group

Therefore, the fold change of gene expression level = 2−(∆∆Cq of target gene)

The expression level was regarded as overexpression if the fold change of the gene
expression level ratio ( Target gene (tumor)/Reference gene (tumor)

Target gene (non−tumor)/Reference gene (non−tumor) ) was larger than 1.2; a
ratio between 0.8 and 1.2 was considered as no significant change, while a ratio smaller
than 0.8 was considered as underexpression of the target gene [53].

4.11. Wound-Healing Assay

A wound-healing assay was performed to evaluate cell migration and growth. Ap-
proximately 1 × 106 KYSE150 cells were cultured in a 6-well plate at 37 ◦C with 5% CO2
overnight to let the cells adhere and grow to reach about 70~80% confluent monolayers. On
the second day, the monolayer was gently scratched with a new 1 mL pipette tip across the
center of the well to generate a wound area without changing the medium. After scratching,
the well was gently washed twice with warm PBS buffer to remove detached cells, and the
well was replenished with fresh medium or different concentrations of tested compounds
(compound 91b or recLumican). The cells were incubated at 37 ◦C with 5% CO2 again and
observed by microscope (Olympus CKX41, Tokyo, Japan) at different time points (0, 6, 12,
24, or 48 h after scratching, depending on different cell types) for photography.

4.12. Transwell Invasion Assay

Cancer cell invasion was evaluated by matrigel-coated membrane (8 µm pore size,
BD Biocoat, Corning, San Jose, CA, USA) chambers in a 24-well plate. KYSE150 cells were
investigated in this test. The lower chamber was filled with RPMI-1640 medium containing
10% FBS with purified recLumican, Beijing, at concentrations of 0 ng/mL, 50 ng/mL,
250 ng/mL, and 500 ng/mL. Approximately 5000 cancer cells were cultured in 200 µL
serum-free RPMI-1640 culture medium in the upper chamber. At the same time, the same
number of cells were cultured in an uncoated membrane (8 µm pore size) chamber as
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a control. After 24 h of incubation at 37 ◦C with 5% CO2, the uninvaded cells on the
upper chamber were scraped off with a cotton swab, while the transmembrane cells that
migrated to the opposite side of the membrane were fixed in 100% methanol for 10 min
followed by staining with 0.5% crystal violet solution after washing twice with PBS. The
transmembrane cells were counted under a microscope (Olympus CKX41, Japan) in four
random fields at a magnification of 40 times. The invasion percentage was calculated
by: invasion% = number of cells invading through matrigel−coated membrane

number of cells invading through uncoated membrane × 100 to determine the
cell invasion.

4.13. In Vivo Study in Nude Mice Xenograft Model

An in vivo nude mice xenograft model was used to evaluate the anticancer activity of
the compound 91b1 in animals. For the preparation of cancer cell xenografts, approximately
1 × 106 trypsinized cells suspended in HBSS (Life Technologies, Waltham, MA, USA)
were implanted subcutaneously into the mid-dorsal region of each athymic nude mouse
(BALB/c-nu/nu, female, 4 weeks old, purchased from Beijing Charles River Laboratories.
The animal approval code was 440072000011798 and the certificate number was SCXK
(Beijing) 2012-0001). Tumors were allowed to grow without treatment for 10 days. When
the tumors became palpable (approximately 150 mm3 in volume, calculated by the formula
following [54]), each test agent (0.2 mL in volume, 50 mg/kg/day for the compound
91b1, 1 mg/kg/day for doxorubicin, or vehicle control) was injected into each mouse via
the intraperitoneal (i.p.) route. Compound 91b1 was dissolved into 6% PEG and then
physiological saline was used to prepare the stock solution to test its anticancer action.
Doxorubicin was dissolved in 6% PEG physiological saline as the positive control, and 6%
PEG was dissolved in physiological saline as the vehicle control. Each agent was given to
each mouse from the tested groups as treatment, n = 5.

Tumor dimensions were assessed every other day with calipers, and tumor volumes
were estimated using two-dimensional measurements of length and width and calculated
with the formula [l × w2] × 0.52 (where l is length and w is width), as previously de-
scribed [54]. Photos were taken every five days. After 25 days of treatment, all animals
were sacrificed by CO2 inhalation and then dissected to collect the subcutaneous xenografts.

4.14. Statistical Analysis

Two-tailed t-test was used to determine the statistical significance of the differences
observed between groups. Statistical analyses were conducted by the statistics program
GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, USA) or software Excel. A
P-value of <0.05 was considered statistically significant and marked with a*, and a p-value
of <0.01 was considered remarkably statistically significant and marked with a**.

The comparative ∆∆Ct method was applied for relative quantification in qPCR analysis [52].
A violin plot, heatmap, and scatter plot of different expressed genes were analyzed in

the R platform (V4.1.0) and visualized by ggplot 2 (V3.36).

5. Conclusions

The novel quinoline compound 91b1 demonstrated strong anticancer effects, both
in vitro and in vivo. Compound 91b1 suppressed cell proliferation, modulated the cell
cycle, and downregulated Lumican mRNA expression. The predicted target of compound
91b1 Lumican was found to be overexpressed in many kinds of cancer cells, and induced
cancer cell migration and invasion. It is hypothesized that compound 91b1 inhibits cancer
cell progression by downregulating Lumican expression. The above results suggest the great
potential of quinoline compound 91b1 to be developed as a novel anticancer drug, and they
indicate that Lumican could be developed as a new therapeutic target in cancer treatment.
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